SCANNING TUNNELING MICROSCOPY

http://www.almaden.ibm.com/vis/stm/gallery.html

Scanning Tunneling Microscopy, Jingpeng Wang, University of Guelp, GWC, CHEM 7513, (2006)

STM - INTRODUCTION

- > Tunnel effect
- Atomic resolution, better than the best EM
- Non-destructive measurements
- Tunneling current gives atomic information about the surface
- Scanning Probe Microscopes (SPM): designed based on the scanning technology of STM

SCANNING TUNNELING MICROSCOPY

THEORY AND PRINCIPLES

- In classical physics electron flows are not possible without a direct connection by a wire between two surfaces.
- On an atomic scale a quantum mechanical particle behaves in its wave function
- There is a finite probability that an electron will "jump" from one surface to the other of lower potential

THEORY AND PRINCIPLES

- If these leak-out waves overlap and a small bias voltage is applied between the tip and the sample, a tunneling current flows.
- The magnitude of this tunneling current does not give the nuclear position directly, but is directly proportional to the electron density of the sample at a point.

EXPERIMENTAL SETUP

- > the sample
- a sharp tip on a piezoelectric crystal tube
- a mechanism to control the location of the tip in the x-y plane parallel to the sample surface
- a feedback loop to control the height of the tip above the sample (the z-axis)

EXPERIMENTAL SETUP

- Raster the tip across the surface, and using the current as a feedback signal.
- The tip-surface separation is controlled to be constant by keeping the tunneling current at a constant value.
- The voltage necessary to keep the tip at a constant separation is used to produce a computer image of the surface.

What does piezo-electric mean?

- In 1880 Pierre Curie: by applying a pressure to certain crystals induce a potential across the crystal.
- The STM reverses this process. Thus, by applying a voltage across a piezoelectric crystal, it will elongate or compress.
- A typical piezoelectric material used in an STM is Lead Zirconium Titanate.

Experimental details: Tips preparation

- STM tip sharp needle and terminates in a single atom
 - Pure metals (W, Au) Alloys (Pt-Rh, Pt-Ir)
 - Chemically modified conductor (W/S, Pt-Rh/S, W/C...)
- Preparation of tips: cut by a wire cutter and used as is cut followed by electrochemical etching

APPLICATIONS: Electrochemical STM

APPLICATIONS: Electrochemical STM

- Three-electrode system+ STM: the STM tip may also become working electrode as well as a tunneling tip.
- faradic currents several orders of magnitude larger than the tunneling current
- STM tip: a tool for manipulating individual atoms or molecules on substrate surface
- Tip crash method: (surface damaged) use the tip to create surface defects

APPLICATIONS: Electrochemical STM

Electrochemistry can be used to manipulate the adsorbates

STM

STM is one the most powerful imaging tools with an unprecedented precision.

Disadvantage of STM:

- Vibrations from fans, pumps, machinery, building movements ...
- 2. Ultra high vacuum
- 3. Do not work with nonconductive materials, such as glass, rock, etc.
- Spatial resolution of STM is very good, but temporal resolution (around seconds) – no appropriate for fast kinetics of electrochemical process.

SPM -Principle

Scanning Probe Microscope

- 1. What does an AFM measure?
- 2. How does it work?
- 3. Tip and Cantilever
- 4. Laser Beam Deflection
- 5. Scanner and Feedback Control
- 6. Imaging Modes

Forces in AFM measurements

Forces in SPM measurements

Attractive forces between surface and tip:

- Electrostatic, magnetic forces (typical range 1000 nm) (surface dependent)
- Chemical bonding forces <1 nm (surface dependent)
- VdW forces < 5 nm (tip radius dependent)
- Capillary forces due to water film on surface (only in air)

3D AFM image

Polymer pattern

How It Works

- Cantilever
- Tip
- Surface
- Laser
- Multi-segment photodetector

http://www.molec.com/what_is_afm.html

- 3-D Surface Topography
- Force: pico-Newton nano-Newton range
- May be combined with other techniques

Basic Principle

Detecting forces between a mass (tip) attached to a spring (cantilever)

Tip+cantilever feel some force when it is brought very close to the surface.

- Sensor: responds to a force
- The sensor: a cantilever beam with an effective spring constant k, moves in accordance with the forces acting on its tip
- Detector: measures the force by detecting the deflection in the cantilever

- Modern SPM use a split photo diode to detect the deflection
- System is sensitive to 0.01 mm as the tip scans the sample surface

- Frequency of atoms vibration, f, at room temperature
 ~ 10¹⁴ Hz
- The mass, m, of an atom ~ 10⁻³⁰ kg
- The effective spring constant, k, between atoms is k=ω²m≈1N/m

Design of an atomic force microscope

AFM is performed by scanning a sharp tip on the end of a flexible cantilever across the sample while maintaining a small force.

Tip radii: 1nm to 10nm

Atomic Force Microscopy (AFM)

- AFM has two modes, tapping mode and contact mode.
- In contact mode, constant cantilever deflection is maintained.
- In tapping mode, the cantilever is oscillated at its resonance frequency

Contact Mode AFM

- A tip is scanned across the sample while a feedback loop maintains a constant cantilever deflection (and force)
- The tip contacts the surface through the adsorbed fluid layer.
- Forces range from nano to micro N in ambient conditions and even lower (0.1 nN or less) in liquids.

Non-contact mode AFM

(movie)

Tapping Mode AFM

- A cantilever and tip oscillate at its resonant frequency and scanned across the sample surface
- A constant oscillation amplitude (constant tipsample interaction) are maintained during scanning. Typical amplitudes are 20-100nm
- Forces can be 200 pN or less
- The amplitude of the oscillations changes when the tip scans over bumps or depressions on a surface

Non-contact Mode AFM

- The cantilever oscillate slightly above its resonant frequency
- Oscillation amplitude <10nm
- The tip does not touch the sample. Instead, tip oscillates above the adsorbed fluid layer
- A constant oscillation amplitude is maintained.
- The resonant frequency of the cantilever is decreased by the van der Waals forces which extend from 1-10nm above the adsorbed fluid layer - changing the amplitude of oscillation.

Advantages and Disadvantages of contact mode

– Advantages:

- High scan speeds
- The only mode that can obtain "atomic resolution" images
- Rough samples with extreme changes in topography can sometimes be scanned more easily

– Disadvantages:

- Lateral (shear) forces can distort features in the image
- The forces normal to the tip-sample interaction can be high in air due to capillary forces from the adsorbed fluid layer on the sample surface.
- The combination of lateral forces and high normal forces can result in reduced spatial resolution and may damage soft samples (i.e. biological samples, polymers, silicon) due to scraping

Advantages and Disadvantages of tapping mode

– Advantages:

- Higher lateral resolution on most samples (1 to 5nm)
- Lower forces and less damage to soft samples imaged in air
- Lateral forces are virtually eliminated so there is no scraping
- Disadvantages:
 - Slightly lower scan speed than contact mode AFM

AFM Modes: comparison

- Contact Mode
 - High resolution
 - Damage to sample
 - Can measure frictional forces
- Non-Contact Mode
 - Lower resolution
 - No damage to sample
- Tapping Mode
 - Better resolution
 - Minimal damage to sample

Topography

2.5 x 2.5 nm simultaneous topographic and friction image of highly oriented pyrolytic graphic (HOPG). Bumps represent topographic atomic corrugation, while coloring reflects the lateral forces on the tip.

Scan direction: right to left

AFM -Resolution

STM-single atom interaction

- AFM-several atoms on tip interact with several atoms on surface
- In contact, not necessarily a single atom contact, radius of contact ~(Rd)^{1/2}

(d-penetration depth, R-radius of tip)

AFM -Resolution

- Interaction of atom 1 different from interaction of atom 3,2
- Each tip atom produces a signals with offset to each other
- Periodicity reproduced but no true atomic resolution

AFM -Resolution

R. Bennewitz, University of Basel, Switzerland

Origin of increased contrast of step-edges and kinks: tip-sample interactions.

R. Bennewitz, University of Basel, Switzerland

AFM Images - Au (111)

High resolution scan of Au (111) surface, with reconstruction strips (inset) hexagonal atomic structure.

Scan size: 5nm; inset: 20 nm

AFM Images

Tapping-Mode AFM image of a single carbon-nanotube molecule on electrodes. 530nm x 300nm scan

C. Dekker and Sander Tans, Delft University of Technology, Department of Applied Physics and DIMES, The Netherlands.

AFM Images: biological specimens

Protein surface layer of D. Radiodurans. Courtesy of Digital Instruments.

Magnetic Force Microscopy (MFM)

- Coated with a magnetic covering
- Two modes of operation
 - Non-vibrating for larger magnetic fields
 - Vibrating for weaker fields that require a greater sensitivity

Magnetic Force Microscopy (MFM)

- Uses a two steps technique
 - First pass finds topography of sample
 - Second pass finds the magnetic field
- On the second pass tip is kept at a constant height

Magnetic Force Microscopy (MFM)

Imaging of ferromagnetic surfaces

Magnetic domain walls on BaFe₁₂O₁₉, measured with iron coated AFM tip.

A. Wadas et al., University of Hamburg, Germany

Topographic and Magnetic Images

corrugation 4nm Scan of 500×500 micrometer

Comparison betweeen corrugation and magnetic structure information detected with an MFM cantilever, identical position

Electrostatic Force Microscopy (EFM)

- A bias is used to create an electrostatic field between the tip of the probe and the sample
- Two uses
 - Determine which regions are conducting and which are insulating
 - Determine the electric potential at different points

Lateral Force Microscopy

- Tip is scanned sideways. The degree of torsion of the cantilever is used as a relative measure of surface friction caused by the lateral force exerted on the tip.
- Identify transitions between different components in a polymer blend, in composites or other mixtures
- This mode can also be used to reveal fine structural details in the sample.

Lateral Force Microscopy

Natural rubber/ EDPM blend

20 micron scan

Polished polycrystalle silicon carbide film.
Grain structures

30 micron scan

Magnetic recording Head

Al oxide grains and contamination 800nm scan

Phase Imaging

- Accessible via Tapping Mode
- Oscillate the cantilever at its resonant frequency. The amplitude is used as a feedback signal.
- The phase lag is dependent on several things, including composition, adhesion, friction and viscoelasticity properties.

Phase Imaging

- Identify two-phase structure of polymer blends
- Identify surface contaminants that are not seen in height images
- Less damaging to soft samples than lateral force microscopy

Phase Imaging

Composite polymer imbedded in a matrix 1 micron scan

Bond pad on an integrated circuit Contamination

1.5 micron scan

MoO₃ crystallites on a MoS₂ substrate

6 micron scan

Image/photo taken with NanoScope® SPM, courtesy Digital Instruments

Chemical Force Microscopy

Detection of a functional group by atomic force microscopy

Carboxylic acid groups are chemically attached to a gold-coated AFM tip

Showing interaction between the gold tip coated with – COOH groups and the sample coated with both – CH₃ and -COOH

Schematic views of the experiment

Chemical Force Microscopy

Ordinary AFM scan (without chemically modified tip)

When tip is coated with –CH₃ groups

When tip is coated with -COOH groups

References

- G. Binnig and H. Rohrer, U.S. Patent No. 4,343,993 (10 August 1982)
- Electrochemical Scanning Tunneling Microscope (ECSTM) http://www.soton.ac.uk/~surface/suec_stm.shtml
- The Tunneling Current A Simple Theory http://wwwex.physik.uni-ulm.de/lehre/methmikr/buch/node5.html
- Scanning Tunneling Microscopy http://www.physnet.uni-hamburg.de/home/vms/pascal/stm.htm
- Scanning Tunneling Microscopy Basics http://nanowiz.tripod.com/stmbasic/stmbasic.htm
- Scanning Tunneling Microscopy <u>http://www.chembio.uoguelph.ca/thomas/stm_research.html</u>
- J.C. Davis Group, LASSP, Cornell University;
 http://people.ccmr.cornell.edu/~jcdavis/stm/background/STMmeasurements.htm
- The Scanning Tunneling Microscope-What it is and how it works http://www.iap.tuwien.ac.at/www/surface/STM Gallery/stm schematic.html
- A short history of Scanning Probe Microscopy http://hrst.mit.edu/hrs/materials/public/STM thumbnail history.htm
- Lecture 4, "Scanning Tunneling Microscopy", CHM8490/8190, Spring 2000, Dr. Gang-Yu Liu (available online)
- Mixing electrochemistry with microscopy, J ames P. Smith; http://elchem.kaist.ac.kr/publication/paper/misc/2001 AC 39A/2001 AC 39A.htm
- S.Wu.Tian; "Application of Electrochemical Scanning Tunnelling Microscopy in Electrochemistry"; http://www.nsfc.gov.cn/nsfc/cen/HTML/jw4/402/01/1-2.html

Bibliography

- Binnig, G., Rohrer, H., et al., (1982) Phys. Rev. Lett., 49:57
- G. Binnig, et al., Phys. Rev. Lett., 56, 930-933 (1986)
- Daniel Wortmann, "Interpretation of Scanning Tunneling Microscopy and Spectroscopy of Magnetic Metal Surfaces by Electron Theory", University of Dortmund, February 2000, available online.
- Tim McArdle, Stuart Tessmer, Summer 2002, Michigan State University; "Operation of a Scanning Tunneling Microscope" (available online)
- Davis Baird, Ashley Shew, "Probing the History of Scanning Tunneling MicroscopyUniversity of South Carolina", University of Columbia, October 2002, available online.
- D.M. Kolb, Surface Science 500 (2002) 722–740
- Cavallini, M and Biscarini, F. Review of Scientific Instruments, 71 (12) December 2000.
- L. A. Nagahara, T. Thundat, and S. M. Lindsay; Review of Scientific Instruments Vol 60(10) pp. 3128-3130. October 1989
- > J.Lipkowski, 1999; Alcan lecture, Canadian J. Chem., 77, 1168-1176.
- W. Li, J.A. Virtanen, R.M. Penner, Appl. Phys. Lett. 60 (1992) 1181.
- W. Schindler, D. Hofmann, J. Kirschner, J. Appl. Phys. 87 (2000) 7007.
- D.M. Kolb, G.E. Engelmann, J.C. Ziegler; Solid State Ionics 131 (2000) 69–78
- D.M. Kolb, G.E. Engelmann, J.C. Ziegler; Sol. State Ionics 131 (2000) 69.
- N.J. Tao, C.Z. Li, H.X. He; Journal of Electroanalytical Chemistry 492 (2000) 81–93